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Abstract 

The derivation of the generating function given by 
Bleris & Delavignette [Acta Cryst. (1981), A37, 779- 
786] is simplified and made rigorous. It is shown that 
their main result can also be deduced directly from 
Grimmer [Acta Cryst. (1974), A30, 685-688]. The fol- 
lowing applications of the generating function are 
described: determining all rotations that generate 
coincidence site lattices (CSLs) by giving their axis 
and angle or their matrix, determining the equivalence 
classes of rotations with respect to cubic symmetry 
and the 180 ° and minimum-angle rotations that they 
contain, determining the number of rotations in each 
equivalence class and the total number of rotations 
that generate a CSL with given unit-cell volume 2. 
We also discuss how a basis for the CSL can be 
computed and how a bicrystal with a plane grain 
boundary can be characterized. 

1. Introduction 

Ranganathan (1966) showed that a rotation about an 
axis [u, v, w] of a cubic lattice by an angle 0 such that 

0 n V2 t a n - = - - ( u  2+ + w2) '/2, (1) 
2 m 

while m and n are integers, generates a coincidence 
site lattice (CSL) with multiplicity Z equal to an odd 
factor of 

S = m 2 -b(u 2 -b/.)2 q_ w2)n 2. (2) 

(The multiplicity X tells us that the volume of a unit 
cell is X times larger for the CSL than for the cubic 
lattice.) To give this result its strongest form, 
Ranganathan (1966) chooses the integers u, v, w and 
the integers m, n coprime, L e. with greatest common 
divisor (g.c.d.) equal to l, 

g.c.d. (u, v, w)= l and g . c . d . ( m , n ) = l .  (3) 

and suggests without proof that 2 becomes then the 
largest odd factor of S. 

Warrington & Bufalini (1971) showed that a rota- 
tion that generates a CSL is described in a cubic 
crystal coordinate system by a matrix R with rational 
matrix elements. They stated also the stronger result 
that ~ is equal to the least-common denominator D 

0108-7673/84/020108-05501.50 

of the matrix elements of R, a fact which was proved 
rigorously by Grimmer, Bollmann & Warrington 
(1974) and which was used by Bleris & Delavignette 
(1981) to show that ,~ is in fact the largest odd factor 
of S. The latter paper will be referred to as BD. 

"Putting 

S = a ~ ,  (4) 

it follows that c~ must be either 1, 2 or 4 because it 
follows from (3) that S cannot be a multiple of 8. 

It will be shown in § 2 that this connection between 
S and the multiplicity ,~ follows immediately from 
lemma 1 in Grimmer (1974b) and that his quaternions 
are equivalent to Ranganathan's generating function. 
Also that paper quoted the result ,~ = D and gave the 
connection between the generating function 
(expressed as a quaternion) and the form of the 
rotation matrix. 

The important feature of BD is the emphasis put 
on the fact that a generating function can be derived 
by examining the form of the rotation matrices with 
a given value of D. In fact, Bleris, Nouet, Hagbge & 
Delavignette (1982) have shown that CSLs in 
hexagonal lattices can be investigated analogously. 
Unfortunately, the proof presented by BD contains 
a few errors and gaps. Instead of just correcting them, 
a new, simpler and more lucid proof is presented in 
§ 3. §4 describes applications of the generating 
function. 

2. The connection between Grimmer (1974b) and 
Bleris & Delavignette (1981) 

Equations from Grimmer (1974b) will be put between 
brackets [ ], equations from BD between braces { }. 

Lemma 1 in Grimmer (1974b) can be stated as 
(1) Each quadruple of coprime integers m, U, V, W, 

g.c.d. (m, U, V, W)= 1, 

defines (by [10] and [4]) a rotation matrix 

R ~ 

s [ m 2 + U 2 - V 2 - W  2 2 ( U V - m W )  
2( UV + mW) m2-  U2 + V2-  W 2 

2 ( U W - m V )  2(VW+ mU) 

(5) 

2( UW + m V) 1 
2(VW- mU) , 

m 2 _ U 2 _ V2+ W 2 
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where S = m 2 +  U2-~ - V2-{ - W 2. D ,  the least-common 
denominator  of the matrix elements of R, is equal to 
the largest odd factor of S: 

= D = (m 2 + U z + V 2 + W2)/ot,  

2 odd, a = 1, 2 or 4. (7) 

(2) Two different quadruples define the same rota- 
tion matrix if and only if m ' =  - m ,  U ' =  - U, V ' =  - V, 
W ' =  - W. 

(3) Each rotation matrix with rational matrix 
elements can be obtained in this way. 

[Grimmer (1974b) refers to these quadruples as 
quaternions to indicate that the product of two 
rotation matrices corresponds to multiplying the 
corresponding quadruples according to the (non- 
commutative) law of quaternion multiplication. The 
connection between different ways of expressing rota- 
tions was given by Synge (1960).] 

Putting g.c.d. (U, V, W) = n, u = U~ n, v = V~ n, w = 
W / n ,  we obtain (3) from (5) and (4) from (7), which 
shows that our qua te rn ions  are equivalent to 
Ranganathan 's  generating function. 

The main equations {31} and {32} of BD are 
obtained as follows: introducing d = u 2 + v 2 + w 2 we 
find that (6) is equivalent to {31} and that (7) is 
equivalent to {32}. 

3. Derivation of a generating function for the rotations 
generating CSLs with multiplicity 2? 

From the general form of  a rotation matrix, a new 
derivation of the generating function for the rotations 
generating CSLs will be given in this section, i.e. no 
use will be made of the results stated in § 2. 

Expressed in a cubic crystal coordinate system, a 
rotation by an angle 0 around an axis with direction 
cosines p~, P2, P3 is given by the matrix 

I 
-p2(l --COS O) plp2(l -COS O) plp3(l -COS 0)7 

+COS 0 --P3 sin 0 +P2 sin 0 / 
plp2(l --COS 0) p2(l --cos 0) p2P3(l --cos 0 ) /  

R = [ +P3 sin 0 +cos 0 -Pl  sin 0 / ' 

] plP3(l --COS O) p2P3(l --COS O) p32(1 --COS O) / 
[_ --P2 sin 0 +p~ sin 0 +cos 0 _] 

where 

( 8 )  

p2 +p2 +p2 = 1. (9) 

Putting, t = t a n ( O / 2 )  if 0 #  180 °, we obtain sin 0 =  
2t/(1 +t2), cos 0 = ( 1 -  t2)/(1 +t2), 1 - c o s  0 =  
2t2/(1 + t2), so that (8) becomes 

r2 /2p2+ | -- 12 2.t2plP2--21p3 2t2plP3+2tp2 1 
I: /2t2plP2 +2tp3 2t2p 2 + 1 -  t 2 2t2p2P3-2tp,| .  

R=~+12L2t2plP3--2lp2 2t2pzp3+2tp, 2t2p~+l--t2J 

(10) 

As stated in the Introduction, R generates a CSL if 
and only if its matrix elements R U are rational num- 
bers. It follows from (10) that 

( R 3 2 - R 2 3 ) : ( R 1 3 - R 3 1 ) : ( R 2 1 - R 1 2 ) = p l : p 2 : P 3  . (11) 

R32 - R23 , Ri3 - R31 and R2~ - R,2 being rational num- 
bers, there exist three coprime integers u, v, w, 

g.c.d. (u, v, w)=  1, (12) 

such that 

Pl :P2 :P3 = u : v :  w, (13)  

i.e. a rational matrix describes a rotation around a 
lattice direction [u, v, w], which was proved first by 
Fortes (1972a). It follows from (9) that 

pl : U / X/-~ p2 m l) / ~ p3 : W / X/-~ 

where d = u  2+v  2+w 2, (14) 

R21 + RI2 tp~p2 tuv 
- - -  ( 1 5 )  

R 2 1 -  RI2 P3 - w / d ' w  

being a rational number, it follows that t/~/-d is 
rational, too, so that we can write 

t / ~ / d =  n / m ,  (16) 

where n and m are coprime integers, 

g.c.d. (m, n ) =  1. (17) 

Introducing (14) and (16) into (10) we obtain 

R= m 2 +dn 2 

2u2n +m 2 -  dn 2 

x 2urn 2 +2wren 

2uwn 2-  2vmn 

2uvn2 - 2wmn 2uwn2 + 2vmn q 

2v2n2 +rn2-dn2 2vwn2-2umn I" 
2vwn2 + 2umn 2w2n2 + rn2- dn2_] 

( 1 8 )  

Consider now the case 0 = 180 °, which we excluded 
after (9). Equation (8) gives then ½(RI i + 1) 2 = P l , ~ R I 2  = 
P~P2, ½RI3 = PIP3. These numbers being rational, one 
concludes similarly, as above, that the pj can be writ- 
ten in the form (14), (12). Specializing (8) to 0 = 180 ° 
and using (14), we find that R is of the form (18) with 
m = 0 and n = 1, i.e. (17) also remains true. 

Putting 
U = un, V = vn, W = wn 

and (19) 

S =  m 2 + dn 2= m 2+ U 2+ V 2+ W 2, 

we obtain from (12) and (17) 

g.c.d. (m, U, V, W)= 1 (20) 

and (18) becomes 

R =  

2(UV+mW) m 2_ U2+ g2_ W 2 2 ( V W - m U )  

2 ( U W - m V )  2 ( V W + m U )  m 2 - U 2 - V 2 + W  2 

_ [r,j] (21) 
S 
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If a denotes the greatest common divisor of the nine 
integers ru, we can write, according to Warrington & 
Bufalini (197 l), 

2, = D = S~ a = (m 2 + dn2)/ a 
= (m 2 + U 2 + V 2 + W2)/a. (22) 

It remains to determine a" 
r~, + r  2, +r~, = S z 

- r t l  - r22- r33 = S - 4 m  2 

- - r t l  -[- r22 "4- r33 : S - - 4 U  2 

rtt - r22 + r33 = S - 4 V 2 
rll +r22-- r33 = S - 4  W 2. 

(23) 

Let k[l express that k and l are integers and that k 
divides I. Equation (23) shows that a2[S 2, i.e. alS. 
Equation (24)shows then that al4m z, a l4U z, al4V 2, 
a l 4 W  2, i.e. a[4 because of (20). Let N denote the 
number of odd integers among m, U, V, W. Equation 
(20) excludes N = 0 ,  whence N =  1, 2, 3 or 4. The 
square of an odd number being of the form 8k + 1 (k 
an integer) and the square of an even number being 
of the form 4k, it follows that S has the form 4k + N. 
From a[4 and a[S follows then (1) a = 1 if N = 1 or 
3; (2) a = N if N = 2  or 4 because (21) shows that 
each r 0 is a multiple of N. 

The results can be summarized as follows. A rota- 
tion R of a cubic lattice generates a CSL if its axis 
[ U, V, W] is a lattice direction, i.e. if U, V and W are 
integers, and if its angle 0 satisfies (16), i.e. 

0 ( U 2 -~- V 2 "St- W 2 )  I/2 

- - , (24) tan 2 m 

where m is an integer. We can choose 
g.c.d. (m, U, V, W)= 1 without restricting generality. 
The matrix describing R is given by (21), where S = 
m2+ U2+ V2+ W z. The least common denominator 
of its matrix elements (equal to the multiplicity ~ of 
the CSL) is given by ~ = S / a ,  where 

c r = l  i f N = l  or3 ,  a = 2 i f N = 2 ,  a = 4 i f N = 4 ,  

(25) 

N being the number of odd integers among m, U, V, 
W. Z is an odd integer. 

The term 'generating function' introduced by 
Ranganathan (1966) is appropriate for ,~= 
( m  E + U 2 q- V 2 -b  wE)/ot because of the one-to-one 
correspondence between rotation matrices generating 
CSLs with multiplicity 2 and the pairs ±[m, U, V, W] 
of quadruples of coprime integers satisfying m2+ 
U2+ V2+ W 2= a~,  a = 1, 2 or 4, ,~ odd. Because 
+[m, U, V, W] determine the same matrix, we may 
choose the first non-vanishing component of the 
quadruple to be positive. With this restriction, we 
obtain a one-to-one correspondence between quadru- 
ples and matrices. The three integers U, V, W, which 
need not be coprime, determine the rotation axis 
[ U, V, W], the rotation angle 0 is given by (24), the 
rotation matrix by (21). 

Table 1. The possible forms of  the characteristic 
{mo, Uo, Vo, Wo} of  an equivalence class, the number 
N = 24M of  rotations in it and the symmetry o f  the 

CSL it generates 
{too, Uo, Vo, Wo} M S y m m e t r y  o f  the  C S L  

mo > Uo > Vo > Wo > 0 48 Triclinic or 
monoclinic (28a) 

mo> Uo > Vo > Wo = 0 Monoclinic or 
W o > 0, two numbers equal 24 orthorhombic (28b) 
Vo> Wo=0, two numbers equal 12 Orthorhombic (28c) 
Wo> 0, three numbers equal 8 Hexagonal if 3[Z, 

rhombohedral otherwise (28d) 
m o > U o > V o = W o = 0 6 Tetragonal (28e) 
{I ! 10} 4 Hexagonal (28f) 
{ I 0 0 0} l Cubic (28g) 

4. Some applications of  the generating function 

The relative orientation between two neighbouring 
grains of the same phase with point group 432 or 
m3m can be described in different ways: carry out 
one of the 24 symmetry rotations of one grain, then 
a rotation that orients it parallel to the other grain, 
then a symmetry rotation in its new orientation. 
Because also the roles of the two grains can be inter- 
changed, up to 2 x242= 1152 different rotations are 
obtained in this way. They were called (cubically) 
equivalent by Grimmer (1973, 1974b) because they 
all describe the same relative orientation of the two 
grains and of two cubic lattices. 

Exactly one representative of each equivalence 
class is obtained by considering only the quadruples 
of coprime integers [too, Uo, Vo, Wo] satisfying 

mg + Ug + Vg + wg = ~:, 
(26) 

mo- Uo -> Vo- Wo-0. 

Each equivalence class is therefore determined by its 
characteristic {mo, Uo, Vo, Wo}. The quadruples 
equivalent to [mo, Uo, Vo, Wo] are obtained by 
arbitrary permutations and sign changes in the six 
quadruples 

[mo, Uo, Vo, Wo] 

[ mo + Uo, m o -  Uo, Vo + Wo, Vo-  Wo] 

[mo+ Vo, mo- Vo, Uo+ Wo, Uo- Wo] 
[mo+ Wo, mo- Wo, Uo+ Vo, Uo- Vo] 
[too+ Uo+ Vo+ Wo, mo+ Uo- Vo- Wo, 

(27) 

m o -  Uo + Vo-  Wo, m o -  Uo-  Vo + Wo] 

[too+ Uo+ Vo- Wo, mo + Uo-  Vo + Wo, 

m o -  Uo + Vo + Wo, m o -  Uo-  Vo-  Wo], 

i.e. there is a maximum number of 4! × 2 4 x 6 = 2 3 0 4  
equivalent quadruples or 1152 equivalent rotations. 
Generally, the number N of different equivalent rota- 
tions is a multiple of 24, N = 24M, and a divisor of 
1152 = 24 x48. 

Table 1 shows the possible forms of the characteris- 
tic {too,/3o, Vo, Wo} of an equivalence class, the num- 
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Table 2. For each equivalence class with ~ < 40 are listed its number o f  rotatio.ns, its minimum angle rotation 
with axis [U, V, W] in the reference triangle U >- V >- W>-O and its 180 ° rotations with axis [u, v, w] in the 

reference triangle (u 2 + v 2 + w 2 = ~ in the left column, u 2 + v 2 + w 2 = 2~, in the right column) 

T h e  e q u i v a l e n c e  c l a s se s  a r e  m a r k e d  b y  t h e i r  c h a r a c t e r i s t i c  a n d  b y  a s h o r t  s y m b o l  c o n s i s t i n g  o f  ~ a n d  a 
l a b e l  a r r a n g i n g  c l a s se s  w i t h  e q u a l  ~ in  o r d e r  o f  i n c r e a s i n g  0rain- 

Equivalence class Representative Axes of 180 ° 
rotations with 

Symbol {mo, Uo, Vo, Wo} M [m, U, V, W] 0mi. (o) u -> v _>- w - 0 
1 1 0 0 0  1 1 0 0 0  0 1 0 0  1 10 
3 1 1 10 4 3 1 1 1  60 1 1 1 2 1 1  
5 2 1 0 0  6 3 1 0 0  36-87 21 0 3 10 
7 2 1 1  1 8 5 1 1  1 38"21 3 2 1  
9 2 2 1 0  12 41 10 38.94 2 2 1  41 1 

11 3 1 10 12 3 1 10 50-48 3 1 1 3 3 2  
13a 3 2 0 0  6 5 1 0 0  22.62 3 2 0  5 I 0 
13b 2 2 2 1  8 7 i 1 ! 27.80 43  1 
15 3 2 1 1  24 5 2 1 0  48.19 5 2 1  
17a 4 1 0 0  6 4 1 0 0  28.07 4 I 0 5 3 0  
17b 3 2 2 0  12 5 2 2  ! 61.93 3 2 2  4 3 3  
19a 33  10 12 61 10 26.53 33  1 6 1 1  
19b 41 1 1 8 4 1 1 1  46-83 5 3 2  
21a 3 2 2 2  8 9 1 1  1 21.79 5 4 1  
21b 4 2  I 0 24 6 2 1  1 44.42 4 2  I 
23 3 3 2  1 24 93  i 1 40.46 63  1 
25a 4 3 0 0  6 7 1 0 0  16.26 4 3 0  7 1 0 
25b 4 2 2  1 24 9 3 3  1 51.68 5 4 3  
27a 51 10 12 51 10 31.59 51 1 5 5 2  
27b 43  1 ! 24 7 2  10 35.43 7 2 1  
29a 5 2 0 0  6 5 2 0 0  43-60 5 2 0  73  0 
29b 43  2 0 24 7 22  I 46.40 43  2 
31a 3 3 3 2  8 !11 1 1 17.90 6 5 1  
31b 5 2 1  1 24 521  1 52.20 7 3 2  
33a 4 4 1 0  12 81 10 20.05 4 4 1  81 1 
33b 4 3 2 2  24 i ! 3 1  I 33-56 7 4 1  
33c 5 2 2 0  12 5 2 2 0  58-99 5 22  55 4 
35a 53 10 24 8 2 1 1  34.05 5 3 1  
35b 4 3 3  1 24 1 1 3 3 1  43.23 6 5 3  
37a 6 1 0 0  6 61 0 0  18.92 6 i 0 7 5 0  
37b 4 4 2 1  24 83 10 43.14 83 1 
37c 5 2 2 2  8 i l  3 3 3  50.57 7 4 3  
39a 61 ! I 8 61 I 1 32.20 7 5 2  
39b 5 3 2 1  48 8 3 2  I 50.13 

ber N = 24M of rotations in it and the symmetry of 
the CSL it generates. Notice that no other cases than 
those listed in Table 1 are possible because either one 
or three of the numbers mo, Uo, Vo, Wo are odd. The 
results on the symmetry of the CSL hold at least for 

< 200 (Grimmer, 1976). The crystal system of the 
CSL does not depend on whether the original lattice 
was primitive, body or face centered (Fortes, 1972b). 
All the rotations of an equivalence class obviously 
create congruent CSLs. The reverse is not true: con- 
gruent CSLs are created, for example, by the classes 
{4 4 1 0} and {5 2 2 0}. 

Grimmer (1976) lists the numbers of equivalence 
classes of rotations with X < 100 and ~ < 2 0 0  that 
give rise to a CSL belonging to a given crystal system. 
The total number of 147 equivalence classes with 
2 <  100 is 1 larger than the number given by BD 
because the trivial case ~ = 1 is included. 

The total number of rotations generating CSLs with 
multiplicity X was determined by Grimmer (1976) to 

be N(.~) = 24M(.~), where 

M ( ~ )  = (p~ + 1)(p2 + 1 ) . . .  (Ps + 1)P~'IP~ '2 . . .  P7 r, (28) 

if the decomposition of the odd number 2 into a 
product of primes contains s different primes, r of 
which appear more than once: 

m I i~12 m 
,~, = P I P 2 ' ' '  PsPt P2 . . - P r  r, (29) 

e.g. 4 5 = 3  x5 x3 ~, M ( 4 5 ) = 4 × 6 x 3  ~ =72.  
It follows from (27) that each equivalence class 

contains quadruples [m, U, V, W] satisfying m-> 
(x/-2- 1) U and m >- U + V + W. The corresponding 
rotations have the least value 0rain of the rotation 
angle. Among these rotations there is at least one with 
U >- V>_ W>_ O, i.e. with axis in the reference (stereo- 
graphic) triangle. If the equivalence class generates 
a CSL, there is only one such rotation (Grimmer, 
1974b), which will be chosen as its representative. It 
is usually called the disorientation. 
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180 ° rotations are of special interest, too, being 
convenient to describe twins (cf. e.g. Fortes, 1972b). 
Equivalence classes of type (28a) contain no 180 ° 
rotations, those of types (28b-28e) contain 24, the 
class {1 1 1 0} contains 16 and {1 0 0 0} contains nine 
180 ° rotations. One of the 180 ° rotations has an axis 
[u,v,w] with u>-v>_w>_O and u2+v2+w2=2 if 
Wo = 0, one has an axis with u -> v -> w -> 0 and u 2 + 
v2+ w 2= 2~ if at least two of the four components 
too, Uo, Vo, Wo are equal. 

Table 2 lists for each equivalence class with ,~ < 40 
its number of rotations, its minimum angle rotation 
with axis [ U, V, W] in the reference triangle U -> V-> 
W - 0  and its 180 ° rotations with axis [u, v, w] in the 
reference triangle. 

Table 2 shows that Fig. 2 in BD needs a correction: 
[5 1 0] belongs to 13a, [5 4 1] to 21a. 

Table 1 in Mykura (1980) extends our Table 2 to 
-< 101. Although his definition of equivalence differs 

from ours, only the asterisks in his table remind us 
of his different definition. 

Expressed in crystal coordinates of one of the two 
lattices, which we call lattice l, a bicrystal in CSL 
orientation with a plane grain boundary may be 
characterized by the disorientation that maps lattice 
1 onto lattice 2 and by a vector perpendicular to the 
grain boundary and pointing towards lattice 2. As an 
example, we consider a bicrystal in 39b orientation 
with a boundary plane that is for one of the two 
lattices of type { 1 0 0}. There are 12 physically distinct 
such bicrystals forming six enantiomorphous pairs. 
They can be characterized by the disorientation 

l[ 34 2 191 
= -22 R ~ 14 29 

- 1 3  26 26 

and one of the 12 vectors 

+ , + , 5: , 

(30) 

(31a) 

+ 14 , + 29 , + -22 . 

\ - 1 3 /  \ 26,/ 26 
(31b) 

An alternative characterization is given by one of the 
two matrices R, R -I and one of the six vectors (31a). 

If M <48 then R -I [or (31b)] is not needed to list 
all physically distinct bicrystals with a boundary 
plane of type {1 0 0} for one of the two lattices. 

Given a rotation matrix, different methods, often 
not described in detail, have been used by different 
authors to determine a basis for the CSL. A systematic 
and easily programmed method for primitive cubic 
lattices was described by Grimmer (1974a). Other 
systematic methods and the transition from primitive 
to centered cubic lattices were described by Grimmer, 
Bollmann & Warrington (1973). A generalization of 
the first-mentioned method to arbitrary lattices was 
given by Bonnet (1976). 
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